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Using a method due to Lewitan [5], in a form given by Hérmander [47],
Frappier [3, Theorem 5] has proved the following result related to the
famous inequality of S. Bernstein (see [2, Chap. 11] or [6, Chap. 6]).

THEOREM A. Let f be an entire function of exponential tvpe t such that
[f(x)| <1 for xeR and f(0)=0. Then

[f(x)] < |sin 1x]| Jor x| < w2t (0

We observe that Theorem A is implicitly contained in a result stated in
the above-mentioned paper of Hormander. According to that result (see
the remark following the Corollary on page 26 of [4]) we have

THEOREM B. Let g be an entire function of exponential type t such tha:
g(x) is real and —1<g(x)<1 when x is real. If g{0)=cosa, where
O0<a<nmand g'(0)=0, then

g(x) = cos(t’x? + a*)'? when t*x*+a’<n’
Now let f satisfy the conditions of Theorem A and consider the function
Hz)=1-f(2)/(2)

which 1s of exponential type 2t with F(0)=1, F'(0)=0. Since F(x)>0 for
xeR we may write (see [ L, p. 154] or [2, Sect. 7.51)

F(x)=|p(x)}?

where ¢ is an entire function of exponential type r such that (0}=1,
¢'(0)=0, and |[p(x)] <1 for xe R. Thus Theorem B applies with =90 to
the function g(z) = (¢(z) + ¢(2))/2 and we obtain

lp(x)} = g(x)=cos x for |x| <=/t
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Consequently,

1—|f(x)?=F(x)=cos*tx for |x|<m/2r, (2)

which is equivalent to (1). In (2) we have used the fact that cos tx >0 for
|x| < x/27.

Note that in our proof of Theorem A we have not required f(x) to be
real for real x.

From Theorem B we also deduce the following result whose relevance is
abundantly clear.

THEOREM C. Let f be an entire function of exponential type © such that
L f(x) <1t for xeR. If | f(0)] =cos a, where 0 <a<n/2, and f'(0)=0, then

Lf(x) <sin ((J(m—a)? +2x>—7n/2)  for |x|<./a(2n—a)/t.

Proof. First note that in Theorem B, the hypothesis “g(0) = cos a” may
be replaced by “g(0)>=cos a” without any change in the conclusion. In
order to prove that (3) holds at an arbitrary point x,€ [ —\/a(2n —a)/z,

Ja(2n—a)/t] we may clearly assume f(x,)#0. Now choose ye R such
that f(x,) e” is positive. The function

8(2) = —H ) e + B e}

is entire and of exponential type 7. It is real and —1 < g(x)<1 when x is
real. Further, g(0) > —cos a=cos(n —a) and g'(0)=0. Hence

g(x) = cos(12x? + (m — a)?)*"? for |x|<./a(2n—a)/t.
Since g(x,)= — f{xy) €” we obtain
| /(x0)] = flxo) €™ < —cos(’x3 + (m —a)?)""? = sin(
From Theorems B and C we can easily deduce the following

COROLLARY. Under the conditions of Theorem C we have

Sll'l a

/O s—7* (4)

In spite of its simplicity, the result contained in this corollary does not
seem to have been noted before.
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