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Using a method due to Lewitan [5J, in a form given by Hormander [4],
Frappier [3, Theorem 5] has proved the following result related to the
famous inequality of S. Bernstein (see [2, Chap. 11] or [6, Chap. 6]).

THEOREM A. Let j be an entire junction oj exponential type r such that
I/(x)1 ",,; 1 jor x E IR and j(O) = O. Then

Ij(x)1 ",,; \sin !XI jor Ix!""; n/2,. (1)

We observe that Theorem A is implicitly contained in a result stated in
the above-mentioned paper of Hormander. According to that result (see
the remark following the Corollary on page 26 of [4]) we have

THEOREM B. Let g be an entire junction oj exponential type r such thal
g(x) is real and -1""; g(x)",,; 1 when x is real. If g(O) = cos a, l1:here
0",,; a < IT and g'(O) = 0, then

Now let j satisfy the conditions of Theorem A and consider the function

F(z)= 1- j(z)j(z)

which is of exponential type 2r with F(O) = 1, F'(O) = O. Since F(x) ~ 0 for
XE IR we may write (see [1, p. 154J or [2, Sect. 7.5])

F(x) = 1q>(xW

where q> is an entire function of exponential type, such that q>(O) = 1,
q>'(O) = 0, and 1q>(x)1 ",,; 1 for x E IR. Thus Theorem B applies with a = 0 to
the function g(z)= (q>(z) + q>(z»)/2 and we obtain

1q>(x)1 ~ g(x) ~ cos rx
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for Ixl:::; n/r.
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Consequently,
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l-lf(xW = F(x) ~ COS
2 rx for Ixl ~ n/2r, (2)

which is equivalent to (1). In (2) we have used the fact that cos rx~O for
Ixl ~n/2r.

Note that in our proof of Theorem A we have not required f(x) to be
real for real x.

From Theorem B we also deduce the following result whose relevance is
abundantly clear.

THEOREM C. Let f be an entire function of exponential type r such that
If(x)1 ~ 1 for x E IR. If If(O)1 = cos a, where 0 ~ a ~ n/2, and j'(0) = 0, then

If(x)1 ~ sin (J(n _a)2 + r2x2- n/2) for Ixl ~ Ja(2n - a)/r. (3)

Proof First note that in Theorem B, the hypothesis "g(O) = cos a" may
be replaced by "g(O) ~ cos a" without any change in the conclusion. In
order to prove that (3) holds at an arbitrary point XoE [-Ja(2n-a)/r,

J a(2n - a )/r] we may clearly assume f(xo) i= O. Now choose')' E IR such
that f(xo) e iy is positive. The function

is entire and of exponential type r. It is real and -1 ~ g(x) ~ 1 when x is
real. Further, g(O) ~ -cos a = cos(n - a) and g'(O) = O. Hence

for Ixl ~Ja(2n-a)/r.

Since g(xo) = - f(xo) e iy we obtain

If(xo)1 = f(xo) e i
)' ~ - cOS(r2x6 + (n - a)2)1 /2= sin(J(n - a)2 + r2x6 - n/2).

From Theorems Band C we can easily deduce the following

COROLLARY. Under the conditions of Theorem C we have

(4 )

In spite of its simplicity, the result contained in this corollary does not
seem to have been noted before.
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